CHEMICAL EQUATIONS:

- shorthand expression showing the changes that take place as the result of a chemical change

chemical equation : Reactants \rightarrow Products

coefficients in a balanced equation = give the relative number of moles of reactants and product in that equation.

GENERAL CLASSES OF REACTIONS: (for prediction of products) 1. Direct Combination Α AB + В \rightarrow a. metal + nonmetal $2\text{Na} + \text{Cl}_2 \ \rightarrow \ 2\text{NaCl}$ $2Ca + O_2 \rightarrow 2CaO$ b. nonmetal + oxygen -> nonmetallic oxide $S \hspace{0.2cm} + \hspace{0.2cm} 0_2 \hspace{0.2cm} \rightarrow \hspace{0.2cm} SO_2$ 2 C + $0_2 \rightarrow 2C0$ c. metal oxide + water -> metallic hydroxide $CaO + H_2O \rightarrow Ca(OH)_2$ Na₂O + H₂O \rightarrow 2NaOH metal oxide = basic oxide = basic anhydride d. nonmetallic oxide + water -> acid **SO**₃ + $H_2O \rightarrow H_2SO_4$ $CO_2 + H_2O \rightarrow$ nonmetallic oxide = acid oxide = acid anhydride e. nonmetallic oxide + Metallic oxide -> salt CaO **SO**₂ + CaSO₃ \rightarrow AB A + B 2. Decomposition \rightarrow \rightarrow anhydrous salt + water a. hydrates CuSO₄•5H₂O \rightarrow CuSO₄ + 5H₂O b. chlorates \rightarrow chlorides + oxygen 2KClO₃ \rightarrow **30**₂ 2KCI + c. (some) metallic oxides \rightarrow metal + O_2 Λ 2HgO 2Hg $\mathbf{0}_2$ \rightarrow + d. carbonates \rightarrow CO₂ oxides + Δ CO_2 CaO CaCO₃ \rightarrow + e. bicarbonates carbonates + \rightarrow H₂O + CO₂ Δ Na₂CO₃ H_2O + CO_2 NaHCO₃ \rightarrow + **O**₂ f. water \rightarrow H_2 + (electrolysis)

3. Single Displacement (Replacement) if A is a nonmetal Α CD D СА + \rightarrow Α CD С AD if A is a metal + \rightarrow + Principle: The more active (non)metallic element replaces the less active (non)metallic element. activity series (EMF) series for metals (decreasing activity): Mnemonic device Li Κ Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn РЬ Little Peter Barry Carl Saw Magnito A Manzy Zebra Carrying Iron Nails To Liverpool. (H) Cu Bi Sb Hg Ag Pt Au He caught Billy A Mexican Silver Plated Goat Halogens: $F_2 > Cl_2 > Br_2 > I_2$ Examples: $Zn + Pb(NO_3)_2 \rightarrow Pb + Zn(NO_3)_2$ $CI_2 + NaBr$ NaCl + Br₂ \rightarrow $Cu + SnSO_4 \rightarrow NVR$ I₂ + NaF NVR \rightarrow 4. Double Displacement (Metathesis) CD AD СВ AB + may result in the formation of an insoluble compound know the solubility rules a. all Na⁺, K⁺, NH₄⁺ compounds are soluble b. all NO_3^- , CH_3COO^- , CIO_3^- compounds are soluble c. all Cl⁻, Br⁻, I⁻ compounds (except Ag⁺+, Hg2⁺+, Pb2⁺+) are soluble d. all SO4²⁻ (except Ba²⁺, Sr²⁺, Pb²⁺, Ca²⁺, Ag⁺) are soluble O^{2-} , OH^{-} , CO_{3}^{2-} , S^{2-} , PO_{4}^{3-} (except Na⁺, K⁺, NH₄⁺) are insoluble e. most Examples: a) Neutralization of Acid and Base HCl(aq) +NaOH(aq) NaCl(ag) water \rightarrow + acid + base salt water \rightarrow b) Formation of an insoluble ppt $BaCl_2(aq) +$ $AgNO_3(aq)$ AgCI(s) $Ba(NO_3)_2$ (aq) \rightarrow pp† c) Metal oxide + acid \rightarrow salt + water + 2HCl(ag)CaO(s) \rightarrow $CaCl_2(aq) + H_2O$ d) Formation of a gas 2HCI(aq) +ZnS(s) $ZnCl_2(aq) + H_2S(g)$ \rightarrow

Combustion reactions of hydrocarbons

rapid reactions that produce a flame. It involves O₂ in air as the oxidant. When hydrocarbons are combusted completely in air, they react with O₂ to form gaseous CO₂ and H₂O vapor. Balancing combustion reactions may follow the following general equation:

 C_nH_{2m} + [(2n + m) ÷ 2] $O_2 \rightarrow nCO_2$ + mH₂O -where n = subscript no. of carbon and m = subscript of hydrogen divided by 2

- coefficients in oxygen may be accepted in fraction form:

Oxidation Nos. - are charges assigned to the atoms of a compound according to some arbitrary rules; to some degree it reflects the positive or negative character of that atom

Rules in assigning oxidation numbers :

- 1. Any uncombined atom or an atom in its elemental state is assigned an oxidation number of zero.
- 2. The sum of the oxidation numbers of the atoms in a compound is zero, since compounds are electrically neutral.
- 3. The oxidation number of a monoatomic ion is the same as the charge on the ion. In their compounds, group IA metals always have oxidation numbers of +1, group IIA elements always have oxidation numbers of +2.
- 4. The sum of the oxidation numbers of the atoms that constitute a polyatomic ion equals the charge on the ion.
- 5. The oxidation number of fluorine, the most electronegative element, is -1 in all fluorine-containing compounds.
- 6. In most oxygen-containing compounds, the oxidation number of oxygen is -2.

Few exceptions :

- a. In peroxides each oxygen has an oxidation number of -1.
- b. In the superoxide ion (i.e. KO₂), each oxygen has an oxidation number of -1/2.
- c. In OF₂ the oxygen has an oxidation number of +2.
- 7. The oxidation number of hydrogen is +1 in all its compounds <u>except</u> the metallic hydrides, in which hydrogen is in the -1 oxidation state.
- 8. In a combination of two nonmetals the oxidation number of the more electronegative element is negative and equal to the charge of the common monoatomic ion of that element.