NOMENCLATURE OF INORGANIC COMPOUNDS

I. Nomenclature come from two latin words, "nomen" which means name and "colors" which means "to call".

II. SYSTEMS OF NAMING COMPOUNDS

- 1. Common name or trivial names this refers to the old system of naming compounds.
- 2. Systematic name this includes the IUPAC system and the stock system.

III. CLASSES OF COMPOUNDS

- A. Binary compounds those compounds which consist of 2 elements.
- B. Polyatomic compunds those compounds which consist of 3 or more elements.

A. NAMING BINARY COMPOUNDS

In naming binary compounds, the electropositive element is named first followed by the electronegative element. The electronegative element is named with the suffix-ide.

1. Compounds of a metal and a non-metal:

Example:

NaCl – sodium chloride BaS – barium sulfide ZnO – zinc oxide

If an element forms more than one oxidation state, it is necessary to distinguish between the states.

A. Old System- makes use of the suffixes-ous and -ic

- ous is used to denote a lower oxidation state
- ic is used to denote a higher oxidation state
- *note: Neither of the 2 endings denote a particular state but only whether it is lower than the other
- B. New System- "Stock name" uses roman numeral to denote the oxidation state of the metal.

Example:		
FORMULA	COMMON NAME	STOCK NAME
FeCl ₂	Ferrous Chloride	Iron (II) chloride
FeCl ₃	Ferric Chloride	Iron (III) chloride
Cu ₂ O	Cuprous oxide	Copper (I) oxide
CuO	Cupric oxide	Copper (II) oxide

2. Compounds if a non-metal:

Example:		
FORMULA	COMMON NAME	STOCK NAME
H_2O	Water	Dihydrogen oxide
NH ₃	Ammonia	Trihydrogen nitride
CH_4	Methane	Tetrahydrogen carbide

*note: In the systematic name, the following (Greek) numerical prefixes are used to denote the number of atoms in the molecule. The prefixes mono- may be dropped as is commonly used or used o emphasize the existence of different compounds made up of two the same atoms.

1 = mono-	5 = penta-	9= nona-
2 = di-	6 = hexa-	10 = deca-
3 = tri-	7 = hepta-	
4 = tetra-	8 = octa-	

Example:

N ₂ O- dinitrogen oxide	N ₂ O ₃ - dinitrogen pentoxide	NO- nitrogen oxide
NO ₂ - nitrogen dioxide	PCl ₃ - phosphorus trichloride	PCl ₅ -phosphorus pentachloride

B. NAMING POLYATOMIC COMPOUNDS

1. For oxy- compounds with <u>more oxygen atoms</u> in the formula, the suffix- **ate** is used, while those with <u>less oxygen atoms</u>, use the suffix- **ite**.

 $\begin{array}{lll} \mbox{Example: } KClO_3 - \mbox{potassium chlorate} & Na_2SO_4 - \mbox{sodium sulfate} \\ KClO_2 - \mbox{potassium chlorite} & Na_2SO_3 - \mbox{sodium sulfate} \\ \end{array}$

2.For oxy- compounds wherein the central atoms has 4 oxidation state like the halogens (eg. Chlorine), the prefix **hypo**- is used for the compounds with the <u>least number of oxygen atoms</u>, while the prefix **per**- is used for the compounds with the <u>most oxygen atoms</u>.

Example:

OXIDATION STATE	
OF CENTRAL ATOM	NAME
+1	Sodium hypochlorite
+3	Sodium chlorite
+5	Sodium chlorate
+7	Sodium perchlorate
	OXIDATION STATE OF CENTRAL ATOM +1 +3 +5 +7

C. NAMING ACIDS

Example.

1. Binary acids (usually hydrogen and a non-metal) are named as in other **binary compounds** when they are **pure**. When their <u>solutions</u> are referred to, hydrogen is replaced by the prefix **hydro**- while the <u>ide</u>-ending of the non-metal is changed to -ic and the word acid is added.

Example:		
FORMULA	PURE SUBSTANCE	AS A SOLUTION
HCl	hydrogen chloride	hydrochloric acid
HF	hydrogen fluoride	hydrofluoric acid

2. Polyatomic acids are named by changing the <u>-ate</u> or the <u>-ite</u> endings of the anions to **-ic** or **-ous**, respectively.

L'Aumpie.		
ION	FORMULA	NAME
(NO_3) nitrate	HNO ₃	nitric acid
(SO_4^{2-}) sulfate	H_2SO_4	sulfuric acid
(ClO_4) perchlorate	HClO ₄	perchloric acid
(NO_2) nitrite	HNO_2	nitrous acid
(SO_3^{2-}) sulfite	H_2SO_3	sulfurous acid
(ClO_2) chlorite	HClO ₂	chlorous acid

D. .NAMING BASES

- 1. Polyatomic bases are usually made up of metals and OH⁻ (hydroxide anion), hence are named by naming the metal followed by the hydroxide.
- 2. For metals with different oxidation state, the <u>roman numeral</u> denoting the oxidation state is inserted and enclosed in parenthesis or the <u>-ic/-ous</u> system as in binary compounds are used.

Example:

$$\label{eq:solution} \begin{split} NaOH-sodium hydroxide \\ Mg(OH)_2-magnesium hydroxide \\ Fe(OH)_3-iron (III) hydroxide or ferric hydroxide \\ Fe(OH)_2-iron (II) hydroxide or ferrous hydroxide \end{split}$$